Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin.
نویسندگان
چکیده
An outcome of overloading of the endoplasmic reticulum (ER) folding machinery is a perturbation in ER function and the formation of intracellular aggregates. The latter is a key pathogenic factor in numerous diseases known as ER storage diseases. Here, we report that heterologous overexpression of the green fluorescent protein-tagged iodide transporter pendrin (GFP-PDS) perturbs folding and degradation processes in the ER. Pendrin (PDS) is a chloride-iodide transporter found in thyroid cells. Mutations in PDS can cause its retention in the ER and are associated with Pendred syndrome. Biochemical and live-cell analyses demonstrated that wild-type GFP-PDS is predominantly retained in perinuclear aggregates and in ER membranes, causing their collapse and vesiculation. Inhibition of protein synthesis by cycloheximide (CHX) or puromycin caused dissociation of the GFP-PDS aggregates and returned the ER to its normal reticular morphology. Blocking protein synthesis promoted folding and export of ER-retained GFP-PDS, as demonstrated by surface-biotinylation analysis and by CHX- or puromycin-induced accumulation of YFP-PDS in the Golgi apparatus during a 20 degrees C temperature-block experiment. The chemical chaperone trimethylamine-N-oxide (TMAO) also reversed the GFP-PDS-mediated ER collapse and vesiculation, suggesting that exposed hydrophobic stretches of misfolded or aggregated GFP-PDS may contribute to ER retention. These data suggest that GFP-PDS is a slow-folding protein with a propensity to form aggregates when overexpressed. Thus, we describe a system for the reversible induction of ER stress that is based entirely on the heterologous overexpression of GFP-PDS.
منابع مشابه
Trimethylamine N-oxide alleviates the severe aggregation and ER stress caused by G98R αA-crystallin
PURPOSE Crystallins are major functional and structural proteins in mammalian lens. Their expression, distribution, and protein-protein interaction affect lens development and fiber cell differentiation. Mutated crystallins lead to structural and functional changes of lens structure and could lead to opacity formation and cataract development. The purpose of this study was to investigate the bi...
متن کاملCHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system
Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP) prevents neuron death in the hippocampus indu...
متن کاملEndoplasmic reticulum stress induced by tunicamycin increases resistin messenger ribonucleic acid through the pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase–activating transcription factor 4–CAAT/enhancer binding protein‐α homologous protein pathway in THP‐1 human monocytes
AIMS/INTRODUCTION Resistin, secreted from adipocytes, causes insulin resistance in mice. In humans, the resistin gene is mainly expressed in monocytes and macrophages. Tunicamycin is known to induce endoplasmic reticulum (ER) stress, and reduce resistin gene expression in 3T3-L1 mouse adipocytes. The aim of the present study was to examine whether ER stress affects resistin gene expression in h...
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملZanthoxylum Alatum Attenuates Chronic Restraint Stress Adverse Behavioral Effects Via the Mitigation of Oxidative Stress and Modulating the Expression of Genes Involved in Endoplasmic Reticulum Stress in Mice
Introduction: The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins’ synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 118 Pt 8 شماره
صفحات -
تاریخ انتشار 2005